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ABSTRACT 

A class of Reggeon field theories with pomerons and fermions is 

described and its infrared behavior deduced using the renormalization 

group. Unlike previous theories with fermions, the ones considered 

here possess fixed points which are completely infrared stable. Moreover, 

one of these theories has infrared free pomeron and fermion Green’s 

functions. The mechanism required to remove the fermion parity 

partners is present in all these theories, including the one which is 

infrared free. In order to calculate the critical exponents, a generalization 

of the e-expansion, based on analytic regularization, is introduced since 

the usual e-expansion cannot be applied to these theories. 

*Present Address: Division TH, CERN, 1211 Geneva 23, Switzerland. 
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I. INTRODUCTION 

In constructing a complete Reggeon field theory for the description 

of hadronic processes, one must, ultimately face the problem of the 

renormalization of ordinary Regge trajectories by the pomeron. In 

renormalizing the pomeron in the infrared region, t near zero and 

@P 
near one, the effect of lower lying trajectories should be negligible 

and so field theories which concern themselves only with the renormalization 

of the pomeron do not include them. Nevertheless, such lower lying 

singularities do impose restrictions on an acceptable form for the pomeron, 

since the same pomeron which accounts for high energy diffraction 

scattering couples to ordinary Reggeons and must also renormalize 

them in an acceptable way. 

What constitutes an acceptable Reggeon field theory? Aside from 

the obvious constraint that it should agree with experiment, we can 

identify at least three theoretically motivated criteria. First, as 

emphasized by White, 1 
3 it would be nice if the 

bare propagators of the theory were poles. Since perturbation theory is 

expected to be valid for j and t positive and large (i. e., outside of the 

infrared region), this would ensure that the leading singularities in this 

region are poles, and we would be guaranteed to have constructed a 

solution to the t-channel discontinuity formulae. A second criterion, 

suggested by Abarbanel, is that the Reggeon field theory should be 
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infrared free in the sense that the effective coupling constant(s) go to 

zero in the infrared limit. In this way, the machinery of the 

renormalization group can be thought of as a filter for selecting those 

field theories which almost reproduce themselves in the infrared limit. 
4 

A third criterion may be stated as follows: if there are fixed points in 

the renormalized parameter space of the complete field theory, at least 

some of these should be infrared stable. Clearly, the most desirable 

situation from this point of view would be one in which we would always 

approach one particular fixed point in the infrared limit, regardless of 

where in the parameter space we started. (one could perhaps present a 

fourth criterion here; namely, that the theory force the fermion parity 

partners to disappear, 
5 

but perhaps this falls more properly under the 

heading of confrontation with experiment. ) 

We emphasize that none of these criteria are rigorously necessary. 

The failure of a theory to satisfy any or all of them does not mean that 

the theory must be discarded - only confrontation with experiment can 

do that - but a theory possessing some of the above features does have 

an edge in theoretical attractiveness. 

The Reggeon field theory which has been studies most extensively 

has a pomeron whose bare propagator is 

where E = 1 - (angular momentum), and q2 = t . The pomerons interact 
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via a bare three-point coupling. The infrared behavior of this pomeron 

theory has been described, 
3 and the effect of this pomeron on linear 

boson trajectories4 and on square-root type fermion trajectories 5 has 

also been examined. In most respects this theory is acceptable. It 

satisfies criterion numer one - all the bare propagators and poles. 

Criterion two is not satisfied, it is not infrared free, but the most 

unsatisfactory feature of the theory is that there appear to be no completely 

infrared stable fixed points. The instability appears when one couples 

fermions into the theory and can be traced to the fact that the slope 

parameters of the pomeron and fermion do not have the same dimensions. 

A modification of the fermion and/or pomeron propagators is evidently 

necessary to remove this instability, and that is the subject of the present 

paper. 

There are a number of ways in which one may try to cure 

instability. We have chosen to modify the pomeron propagator. 

bare pomeron propagator we take the form 

this 

For our 

i[E2+a~c12]-s , 

and we consider a theory with both this pomeron and a bare fermion pole. 

We have not examined the effect of this pomeron on boson trajectories. 

(The pure pomeron theory with s = $ has been discussed by Abarbanel, 

Bartels, and Dash. 6, This theory has several attractive features. First, 

it is completely infrared stable for any s L 3 e For s = $ , both the 



-5- FERMILAB-Pub-74/81-THY 

pomeron (as discussed in Ref. 6) and the fermion are infrared free. 

However, there is an important difference: there is apparently no fixed 

j-plane cut in the renormalized pomeron propagator, but there is a soft 

(logarithmic) cut in the renormalized fermion propagator. The presence 

of this cut is crucial in the fermion, since it provides the mechanism by 

which the fermion parity partners are forced to disappear. This 

difference can be traced to the fact that the bare fermion is a pole, 

while the bare pomeron is not. 

An important technical comment should be made here. In the 

theories we are considering, the standard technique of the e-expansion 

for calculating the critical exponents cannot be used; that is, there is no 

dimension of space-time in which all the coupling constants of the theory 

are dimensionless. To overcome this problem we have developed a 

generalization of the ~-expansion which uses dimensional and analytic 

regularization simultaneously, and lets us find and expand about a fully 

scale invariant theory. The technique will be described more fully later. 

The outline of this paper is as follows: In Section II, we discuss 

the field theory, present the Feynman rules, and set up the renormalization 

conditions. Section III is devoted to a derivation of the renormalization 

group equations, and a discussion of the fixed points and their stability 

properties s The infrared behavior of the renormalized Green’s functions 

is the subject of Section IV. The mechanism for the removal of fermion 
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parity doublets in our theories is also elucidated in this section. Finally, 

a general discussion and conclusions are presented in Section V. 

II. THE FIELD THEORY AND RENORMALIZATION PROGRAM 

We now want to set up the field theory and renormalization procedure 

for the problems we shall consider. The usual approach in this regard, 

is to write down a Lagrangian which expresses the interactions and energy- 

momentum relations of the particles of the theory. For our purposes, 

however, this formal device is rather awkward. The reason is that the 

“particles” of the theory are represented by momentum space propagators 

whose singularities are not poles. The bare pomeron propagator, for 

example, is 

where s is, in general, non-integer. To derive such a propagator from 

an action principle probably requires a non-local Lagrangian and 

generalized Euler-Lagrange equations. Rather than pursuing these 

problems here, we shall assume that a theory with such a propagator 

exists, and that the momentum space Feynman rules of the theory are 

like those which one could derive for s = 1 o We also need to assume 

that renormalization is multiplicative in the usual way, as we shall discuss 

below. 7 

With these remarks in mind, let us proceed to describe the theory. 
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In addition to the pomeron whose propagator is given by Eq. (1), we also 

introduce a fermion trajectory. Its momentum space propagator is 

i[E-AO+bi,]-c 

which may be written as 

(- 
. -CT -CT 

i E Ao+boq ll- . 

(24 

(2b) 

are the positive and negative parity fermion projection 

operators, c 9=-Yp1 s and the two-dimensional vector q satisfies 

q2 =u. Notice that for u < 0 q is purely imaginary. As usual 

in the Reggeon calculus, E = 1 - (angular momentum) e For a detailed 

discussion of the meaning of this propagator when t = 1 , see Ref. 5 

and references therein. Notice,finally, that the bare propagators (I) and 

(2) imply that the bare trajectories near u = 0 are proportional to & . 

We choose to couple the pomeron and fermion together in the 

simplest way possible, namely, by introducing bare triple pomeron and 

fermion-fermion-pomeron couplings. Let 4 be the pomeron field, and 

JI the fermion field. 4 contains both creation and destruction operators, 

while + has only destruction operators. The interaction Lagrangian 

then has the form 

(3) 

Notice that this Lagrangian will not generate any diagrams with closed 
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fe rmion loops e This is quite reasonable since the fermion intercept is 

far below that of the pomeron, and such closed loops will not be an 

important contribution to the pomeron self-energy in the infrared region. 

As pointed out elsewhere, 435 this has the consequence that the 

renormalization of the pomeron decouples from the lower lying trajectories. 

The objects of the theory with which we shall be concerned are the 

connected, amputated, one particle irreducible Green’s functions, l’ k n) . 

k is the number of incoming plus outgoing fermions (= twice the number 

of incoming fermions, since fermion number is conserved), and n is 

the number of incoming plus outgoing pomerons. Because of the relativistic 

nature of the pomeron propagator, no distinction need be made between 

incoming and outgoing pomerons. The amputated Green’s functions, 

$k, n) a in momentum space are related to the unamputated connected 

Greenas functions, G(ka n) by 
c ’ 

q . ..E q E 1’ 1 k’ k’ k+l ’ ‘k+i l l l Ek+n’ ‘k+n 

The rules for calculating in unrenormalized perturbation theory the 

momentum space Green’s functions, G(ka n) , in D space and one 

time dimension are 

1. Draw all topologically distinct graphs with k/2 incoming fermions and 

n pome rons. There are no arrows on the pomeron lines. 



2. 

3. 

4. 

5. 

6. 

7. 

8. 
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Integrate around each closed loop 
s 

dDqdE . 
-iX 

For each three pomeron vertex multiply by 0 
D+1 . . 

(2Tr)2 
-ir 

For each fermion-fermion-pomeron vertex multiply by 0 
D+1 ’ 

For each pomeron line insert a factor i E2+aL C 
22 -s q +ie 1 . 

For each fermion line insert a factor i E-Ao+b;6+ie -c . 
[ 1 

For each two pomeron loop multiply by f . 

Conserve energy and momentum at each vertex. 

Before proceeding to a discussion of the renormalization program, 

it is useful to perform some naive dimensional analysis on the bare 

quantities which appear in our theory. When these quantities are 

renormalized, their dimensions will not, of course, change. Using the 

fact that the action 

A= 

is dimensionless, and the observation that the momentum space propagator 

is given by a space-time integral over a product of two fields, we can 

easily derive the following results. ([ ] means “dimens ion of ‘I) 

1 D 

[$] =E’-q’ , 

l-t D -- 
[$]=E2 q2 , 
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D 

[ 1 =E 
- z 

rO q a 

[a:] = [hi] = Ek-’ . (5) 

We now want to renormalize our theory. To define the renormalized 

parameters of the theory, we adopt the following renormalization conditions 

i pa 2) 
R I 

=o , 
E=O 
q=o 

a 

aE2 

i pa 2) 
R I E2=-EN 

= (-EN)“-’ 

s=o 

a i $0,2) 

I 

= s2(-EN) 
zs-2 

R 
E2=-E 

N 

!A =o 

i r(‘,O) 
R I 

=o , 
F=O 
s=o 

(2,O) 
R I F=-EN 

= t(-EN)+l , 

a 

a 

(6b) 

63 

Pa) 

(7b) 

g=O 
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zI i rw) a 
aq R I E=-EN 

= t(-EN)+l b , 

i r(% 3) 
I 

A = 
E=-EN D+1 ’ 

E2=-REN (ZN 2 

E3=-(I-R)EN 

i r(2,1) r = 
R D+1 * 

FI=-EN 
(23-r) 2 

(7c) 

(8) 

(9) 

F2=-(I-R)EN 

E3=-RE N 

In Green’s functions with fermion lines, we have shifted the bare mass 

away by defining F=E-A0 o This can be done in the calculation of all 

Feynman diagrams because of the absence of fermion loops, as described 

above. The operator in (7~) is define as 

-$ = m!- T 
4 D2 R 

(y’ (10) 

Conditions (6a) and (7a) assure that the pomeron and fermion 

trajectories have their required intercepts. Conditions (6b) and (7b) 

determine the pomeron and fermion wave function renormalization 

constants, Z and W , since 

r (b-0 = Zn/2 WW2 r(kan) 

R 0 
U 
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Equations (6~) and (7~) define the renormalized pomeron and fermion 

slopes respectively, and finally, Eqs. (8) and (9) define the renormalized 

triple pomeron and fermion-fermion-pomeron coupling constants? 

We want to digress here for a moment and anticipate a development 

which we shall discuss in more detail later. The reader familiar with 

the renormalization group and the e-expansion will recognize from (5) 

that when D = 6s-1 the triple pomeron coupling cmstant is dimensionless, 

‘. while the fermion-fermion-pomeron coupling constant is dimensionless 

when D = 4s+o-1 . In general, there is no value of D which satisfies 

both these equations, and so it is not clear how to use the e-expansion 

to calculate critical exponents in this case. However, there is a line in 

the three dimensional s, (T, D Space along which both these conditions 

are satisfied, and the whole theory scale invariant. One can solve the 

theory at a point on this line and expand in a small parameter, which 

plays the role of E , to the theory of physical interest. In particular, 

ifwetake c= 1, as we shall, for simplicity, then the theory is scale 

invariant for D = 2, s = 4 . To get to a general s , we make a b - 

expansion: s = $ + 6 . The fact that for o= I scale invariance obtains 

at D=2, which happens to be the physical number of dimensions, is a 

rather fortuitous feature of problem we are considering and means that 

by varying 6 we sample a range of physical Reggeon field theories. 

While this particular feature may not occur in all cases, such a 

generalized e-expansion, which incorporates both dimensional and 
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analytic regularization has a wide range of application to critical 

phenomena, and is one of the major results of this paper. We shall 

discuss it again, below. 

III. SCALING ARGUMENTS AND THE RENORMALIZATION GROUP 

In this section we will set up and solve the renormalization group 

equations for our theory. For brevity, we shall omit some steps in the 

derivation. The reader interested in filling in the details may refer to 

references 3,4 and 5, where similar arguments are presented more 

fully for other theories. 

Consider the relation (11) between the renormalized and 

unrenormalized Green’s functions. The renormalization group equations 

is based on the observation that the unrenormalized theory, having no 

knowledge of the renormalization point cannot depend on EN: 

d E- 
NaN I 

$Ln) = 0 , 
U 

(12) 

Bare 

where the bare unrenormalized parameters of the theory are held fixed. 

To use this equation in a meaningful way, we proceed in three steps. 

First, we use Eq. (11) to write (12) in terms of Z, W, and IR, 

expressing l? R as a function of the renormalized parameters. Next, 

we replace the dimensional renormalized parameters of the theory with as 

many independent dimensionless parameters as we can. Finally, 
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remembering that these renormalized parameters are functions of E 
N’ 

we carry out the differentiation indicated in (12). The result of all this 

is: 

EL 
N aE a+@ 

+‘aa ap a+p Lp8-2, k 
N P ax fay 2 p-Zyf 

where 

I 
s 

Bare 

O=E it!?- 
N aE 

I 
> 

N Bare 

pp =EN$ I I 
N Bare 

‘p N& 
=E 

I 
, 

N Bare 

yP 
=E w-i!- 

N aEN In ’ 3 

Bare 

yf 
=E ai!- 

N aEN In w 3 

Bare 
(14) 
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and the dimensionless parameters, p, x, and y are defined as 

A 
q! -3s 

X=D/2EN 
a 

D+l - -cJ- s 2 
Y =$jTEN 

P’b 
a l 

, 

a 

(15) 

Notice that since pomeron renormalization decouples from the fermion, 

BP 
is a function only of x , while 0 and p f are, a priori functions -- 

of x, y, and p . 

Now, we are interested in the behavior of the PR when the 

energies, Ei, are scaled to zero. To learn about this limit, we note 

first that 

[-(k, “‘3 = En(+) ++,)_~ b+k-2): 
R cl , ($6) 

so that we can write I’ R 
kn) as 

r(k, n) 
R (Ei, qi’ b, PJX, YsEN) = 

+z(d+c+D)-D-l (2-n-k) 2 a 

where @  is a dimensionless function of dimensionless variables. 
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From (17) it is a simple matter to see that 

r(k,n)(@ g 
R *Ii’ 1 aapJx,y,EN) = 

which implies that 

(18) 

a+a 
cat 

$+E a - + 1 - n($+s) N aEN 1 (5EiJqi’a,P~x,y,~)=o . 
($9) 

Finally, using (19) in (13)’ we have 

I -gag, -5 + (5 -a) $+@a+ ap Pp$+Pff 

n k 
-ZYp 

- zyf + n(++s) + $($+a) - ia r'~Jn)(5Ei,qiJa,p,x,y,EN) 

(20) 

whose solution is 

r(k, n) 
R (~Ei’ 9i’as PJ XJ YJEN) 

= r(ktn) 
R (Eis qis +t), &t,,+t,, +t),EN) 

X exp 

where 

dx(t)=-p 
dt P ’ 
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dY(V - _ 
dt Pf 

dp(t)=-@ 
dt 

and 
t = In 5 . (22) 

As usual, we want to calculate the functions, pp, p,, yp, yf, 0 

and 4: in perturbation theory, and look for the fixed points, hoping that 

the values of the effective coupling constants at the fixed point are small 

so that the approximation is self-consistent. Since we work to lowest 

non-trivial order in perturbation theory, we must calculate the graphs 

shown in Figs. 1 and 2. Only the graphs of Fig. 1 contribute to the 

functions p , 
P y P’ 

and 5 , while all the graphs of Figs. 1 and 2 

contribute, in principle, to (3,, y f’ and 0 s For simplicity, we will 

specialize ‘our considerations to the case c= 1 . The class of theories 

we will be left with will be sufficiently general to make all the physical 

points we wish to make. (Notice however, that by setting o = 1, we 

have reduced the three dimensional (D, s, (r) space to a plane, and have 

limited ourselves to expanding the theory about D = 2, s = $ , as 

discussed above. ) 

Using the Feynman rules of the last section, and the relations 

(14), it is straightforward to calculate the auxilliary functions, (22). 
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They are presented in the Appendix for arbitrary D and s . Here we 

present them keeping only terms which are 1 owest order in 6 = s- $ : 

(23) 

( 24) 

_ 3 = @  - GE2 
dt 

, 
3Tr 2 (25) 

s=o * ( 26) 

-F;2 
yf=6,2 S (27) 

yP = -g2s - 
( 28) 

According to the usual signature analysis, the two coupling constants 

should be purely imaginary, so we have for convenience defined g = ix 

and h = iy n g and h are now real. c is a positive real constant, a 

representation of which is given in the appendix. 

Before describing the fixed points associated with the zeros of the 

three functions (23) - (25), we want to make some technical comments. 

From (23), we see that (3 
P 

depends only on g , the triple pomeron coupling, 

and not on h or p . This was expected since pomeron renormalization 

decouples from the fermion. Notice, however, the rather surprising 

result (24) that p, depends only on h , not on g O The reason is that 

in the scale invariant limit, 6 =o , graphs which are usually thought 
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to be (logarithmically) divergent in ordinary renormalizable field theories 

are convergent when propagators are raised to fractional power, as is 

our pome ron. In particular, graphs (la) and (2b) are finite at d = 0 , 

which accounts for the absence of terms proportional to g2h and hg2 

to lowest order in d in j3, ., 

This effect is also the source of the factor 6 on the right hand 

side of (28). For a general s and D , Eq. (28)) which in lowest order 

is derived from Fig. (la) has the general structure 

yp ‘L .g2(3s: 7) ++2s - y) : 

so only if s = 1,2,3... (s = 1 corresponds to ordinary d3 theory) will 

the coefficient of g2 D+I be finite when the parameter, 3s - 2 , which 

measures the distance from the scale invariant theory goes to zero. 

This appears to be a fairly general property of theories whose propagators 

are not necessarily poles, and charges considerably the set of graphs 

which are summed by the renormalization group in lowest order? For 

comparison, the reader’s attention is drawn to Eq. (27). In this equation, 

which comes from Fig. 2a, the coefficient of h2 is finite as 6 -0, 

because the fermion (although not the pomeron) is a pole. Finally, we 

notice that 5 = 0 , since, as pointed out in Ref. 6, the speed of light 

does not get renormalized in the theory we are discussing. (However, 

the effective speed of light does go to 0~ in the infrared limit, as we shall 

see. ) 
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In alanyzing (23) - (25) for fixed points, it is convenient to consider 

the cases 6 = 0 and 6 # 0 separately. Suppose 6 # 0 0 Then it is 

easy to see that there are infrared (t + - co) stable zeros of p 
P p 

, f , 

and p at 

g2 = 6a26 , h2 =+ , p=o s (29) 

For 6 #O, the fixed points with h and/or g = 0 are not infrared stable 

from all directions in the (h,g, p) parameter space. Assuming that the 

values of the renormalized parameters are sufficiently close to the fixed 

point values (29), we can linearize (23) - (25) and solve for the functions 

g, 6, and “p . In the region of the infrared stable fixed point, we have 

m = ge -66 t * TX& (l-ew6& t, , 

“h(t) = he -26 t f m 1 e ( - -2q , 

26t -- 
2 

,6(-t) = pe 3~ ’ . 

Suppose now that 6 = 0 m Then, the system of Eq. (23) - (25) 

posses a fixed point at 

g=o,ii=o,p=p 
co * 

It is an easy matter to solve for g(t), g (t), and i(t) , and we find 

(30) 

(31) 

2 2 
iz2b) = “-zg tea, 

2 

-rr +t 
-+ , 
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P 1 
iw) = -ee- - (32) 

( 1+2ct) h2/3n2c t +co th2/ 3r2c 

So the fixed point in (31) has p, = 0 , and is infrared stable. The 

functions 2, L, and “p given in (30) and (32) can be used via (21) to learn 

about the infrared behavior of the F R 
. This is the task to which we 

now turn. 

IV. INFRARED BEHAVIOR OF THE GREEN’S FUNCTIONS. 

Because they are qualitatively so different, wz will consider the 

two cases 6 # 0 and 6 = 0 separately. Since our main concern here 

is the behavior of the renormalized fermion propagator I? (2#0) 
R , we will 

(0s 2) 
concentrate on that, and on the pomeron propagator FR . 

First consider the case 6 # 0. From (21) (27), (28) and (29), we 

find at the fixed point 

r(Rk’ n)(@2i, ‘+ a, PI g, h,EN) 

+a,3’2 2 6 )+kk+ A) -I 
r(i+$, qi,a(-t).P(-t),~(-t),B(-t),EN) . 

(33) 

Notice that, although, at the fixed point 
2 y 

P 
* 6 , the scaling dimension 

of pomeron Green’s functions still contains a term proposition to 6 coming 

10 
from the term h( $ +s) in Eq. (21). Of course, if the renormalized 
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parameters g, h and p do not have fixed point values there will be other 

terms in (33), which are less important as c + 0 D 

Recognizing that g2(m), L2(a) * 6 , we can calculate the right 
- _ 

hand side of (33) to lowest order in 6 D For the pomeron and fermion 

propagators, this gives 

i r12# O) R (CE,...) m $+26+‘8r 
3/26 2 [ 1 A+<q’ if6 , (34) 

5 

=5 
l+iiz 

I[ 

2s 1. 3-z- 
B+apf 1 [ 2 --F 3R c -i 

q A+ + B-a& 1 I qfl- , (35) 

where A and B are constants, and where we have used g(-t) = F(-t)S(-t) . 

B (-t) may be thought of as the effective speed of light, (as least for the 

pomeron), and from (22) and (26) is given by 

a(lt) = ae -t = 2 
5 , (36) 

which goes to CD , as provided. As we see from (34), this form is 

2 
necessary to ensure that the q dependence of the pomeron trajectory is 

still of the square root type. 

Let us turn now to the renormalized fermion propagator (35) 0 First 

we notice the presence of the j-plane cut which we have come to expect in 

non-infrared free theories. From the last form of the function given in 

(35), it is a simple matter to analyze the positions of the zeros of the 



-23- FERMILAB-Pub-74/81-THY 

positive and negative parity parts of the inverse propagator. Writing 

q2 i4 =u=ye , we see that the positions of the zeros are given by 

F = Nyie J (37) 

where N is a real constant, and z =- 26 >o 
3?12c 

. For small enough 6 , 

zq, and the positions of the singularities of G (2JO) 
R in the F-plane 

are illustrated in Fig. 3. As in the theory described in Ref. 5, both 

parity poles are on the physical sheet (in complex conjugate positions) 

for u< 0, but for u > 0, one of them (in this case, the negative parity 

pole) moves under the cut and off the physical sheet. If 1 > z > i , 

neither pole will be on the physical sheet for u < 0 , but there will still 

be one pole on the physical sheet for u > 0 0 Of course, this latter 

situation must be taken cum grano salis, --- since for such a large 6 higher 

order terms are undoubtedly quite important. Finally, we remark that 

there are other poles on other sheets of the cut F-plane, but they are 

quite far away, and do not change our argument. 
11 

Let us now turn to the case 6 = 0 . Using (21), (27), (28), and (32), 

we have 
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--kh2 

= ,$n+k-i [i-2c ln5]24<c l’~an)(Ei,qi,~(it),~(-t),~(-t),h(-t), EN) . 

( 38) 

Not ice here the important difference between Green’s functions with 

pomerons and with fermions: For each external fermion leg there is a 

logarithmic cut in the F-plane, but such cuts are not generated by pomeron 

fields. This difference is due to the presence of the factor 6 in (28) 

which is absent in (27), as discussed above. 

Evaluating rR on the right hand side of (38) to lowest order in z2 

and “h2 , we find, using (32), the infrared behavior of the renormalized 

fermion and pomeron propagators: 

2 2 i ry”)(gE,...) 01: c A’+sq [ I , 
f 

i rEJ ‘)(cF, -. .) CC 5(-ln#-V 
11 

B’+y (-ln s)-4vq 1 A+ 

(-ln 5)-4Vq]*-, O 

(39) 

(40) 

h2 >o where v = - 
12a2c 

, and A’ and B’ are constants. Notice that while 

both these Green’s functions are infrared free’ there are logarithmic 

modifications to the fermion propagator and trajectory which are absent 

in the pomeron. 

The implications of this form for the renormalized pomeron Greents 

functions has already been discussed in Ref. 6, so let us concentrate on 

the fermion propagator. We want to find the positions of the zeros of the 

coefficients of A* in the cut F-plane as a function of u e Writing 
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i6 
F=fe , it is easy to see that for small f , the trajectories of the 

positive and negative parity pieces of the fermion propagator satisfy 

f+R+ = N’y’ , (424 

6 + +4v sin -1 -e+ [ 1 9 - = - R, 2 ’ (42b) 

and 
1 

fR =N’y2 , m - 

-8 
8 +4v sin 

-1 c * -1 .= 4 - r z , 

WW 

(42b) 

where 

ln2f*+6: * , 
1 

id u=ye , 

and N’ is a constant. 

The analytic structure of the fermion propagator, G(2J 0) , in the 

F-plane is shown in Fig. 4. The cut generated by the factor (-ln F)v lies 

along the negative real axis. Now, for small 1 u[ , (41) and (42) tell us 

that f* is small, and R* , which is proportional to / -In f* ) + is large. 

With this in mind, we can deduce from small 1 u 1 the values B* when 

u > 0 ($=O) and when u C 0 ($=m) . We find 

u> 0: e+ 
=0 

8 =-IT-A 
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UC 0: e+ =;+A* 
e IT = -- - #R 

2 A , 

where A, A’ , A#‘> 0 , and to lowest order in 1 lnf*I -’ = ( f In y 1 -’ 

have the values 

(43) 

From Fig. 4 we see the by now familiar F-plane structure of the 

fermion propagator. For u > 0 both parity poles are on the physical 

sheet in (nearly complex conjugate positions, but for u < 0 one of them 

moves under the cut and disappears from the physical sheet. Notice also 

(for instance, from (43) ) that unlike the non-infrared free theories which 

have been considered before, the negative parity pole, which is under the 

cut for positive u , moves further away from the cut as u increases. 

So even without considering higher order terms in the trajectory (which, 

however, one must do) the influence of the fermion parity partner is felt 

less and less as the u-channel resonance region is approached. We also 

remind the reader that the present, theory differs from those previously 

discussed in that the F-plane cut in this theory is very soft - a power of a 

logarithm - rather than just a power. By the usual arguments this implies 

a quite small deviation from power behavior in backward V-N scattering, 

namely, a power of In In s . 



There were no references or conclusion with the original paper. 


